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J. Phys. A :  Gen. Phys., Vol. 5 .  May 1972. Printed in Great Britain 

Sources for Kerr type space-times in general relativity 

L MARDER 
Department of Mathematics, The University, Southampton SO9 5NH, UK 

MS received 8 November 1971 

Abstract. The source of a Kerr space-time is generally assumed to be reducible to a disc, 
although the singularity in the solution is in the form of a ring. This is because the maximally- 
extended exterior manifold is multiply-connected, being formed by two sheets joined 
through the ring. However, it is possible, in principle, to construct ‘minimal’ sources 
(reducible to the singularity) for space-times with such topology. This is illustrated in the 
Kerr case with zero mass constant, and some possibly general features are indicated. 

Kerr’s metric (Kerr 1963, Boyer and Price 1965, Carter 1966) 

ds2 = C- ‘((C - 2mr) dt2 - 4amr sin29 dt d 4  - sin2B(aI: + 2a2mr sin28) d4’) 

-Cd62-~CI-1{4mrdrdt+4amrsin28drd4+C(1 +2mra-’)dr2) 

(1) 

where rl = r2 + u2 ,  C = r2 + u2 cos20, is generally believed to describe the exterior 
gravitational field due to a rotating massive body, the two constant parameters m, U ,  

corresponding to mass and negative of angular momentum per unit mass, respectively. 
When a = 0 the metric reduces to Schwarzschild’s solution, and when m = 0 each of 
the regions r > 0 and r < 0 is a complete flat space-time, the two being connected 
through the interior of a ring of radius a. The ring singularity (r  = 0, cos 0 = 0) is a 
general feature of Kerr’s space-time and is a physical (ie irremovable) one. The metric 
possesses stationary axial symmetry, and each two dimensional meridian cross section 
t = constant, 4 = constant has the topology of a quadratic Riemann surface. 

The problem of identifying the source of the field can be tackled in various ways, 
by examining the geodesic motion of particles or light rays (De Felice 1968), by a weak- 
field asymptotic approximation (Boyer and Price 1965), or by matching the Kerr metric 
to an explicit interior solution in a region containing the ring. If the source is assumed 
topologically spherical, the two branches of the exterior space are disjoint, and only 
one of them (r > 0) need be interpreted as physical space. This has the attraction of 
removing all problems associated with multivaluedness and the causality difficulties 
arising from the existence of closed time-like curves in the region r < 0. Hence the 
discovery of Kerr’s metric has prompted many investigations of rotating fluid spheroids 
(Carter 1966), thin spheroidal massive shells (De la Cruz and Israel 1968), and discs 
(Lynden-Bell 1969 and Morgan 1969). 

However, collapse processes render it important to determine the role of ‘minimal’ 
sources, that is, those which are reducible to the physical singularity in the exterior field. 
This note is intended to show that branching behaviour of the type encountered in 
Kerr’s solution need not imply automatically that minimal sources cannot be constructed. 
Details for the Kerr metric will be published elsewhere when completed ; here we shall 
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merely illustrate one approach using the flat manifold (m  = 0). Only the simplest 
possible form for the interior metric will be considered. Nevertheless, even here one can 
distinguish between features which are an obvious consequence of the absence of 
curvature in the exterior field and others which may well be more general. 

We first construct the flat manifold afresh. Consider the Minkowski metric in 
cylindrical polar coordinates (R, 4,  z )  and time t ,  and introduce plane polar coordinates 
(R,, $’) in each meridian half-plane t = constant, 4 = constant (taking R = U. z = 0 
as pole, and the R direction for the polar line), by setting 

R = R, C O S $ ’ + U  z = R, sin$’ ( 2 )  

ds2 = dt2 - dR: - R: d$” - (R, COS $‘ + (3 1 

so that 

d4,. 

If (3) is interpreted on the manifold 

M , :  - X  < t < s 0 < R , c o s $ ‘ + ~  < 0 < R I  < x 

O 6 4 d 2 n  0 < * I  < 271 (4) 
with identification of 4 = 0. 4 = 271, we obtain a complete Minkowski space-time from 
which has been deleted (in each section t = constant) a ring (R, = 0) and its plane 
exterior. A second, identical, space-time is obtained by interpreting (3) on the manifold 
M, ,  defined by (4) except that the last inequality is now replaced by 271 < $’ < 4 7 ~  
Form a new manifold M as the union of M ,  and M ,  with the points $’ = 0,271, 471 
adjoined, and identify $’ = 0 with $’ = 471. Then M ,  with metric (3), has the required 
branching property about the points of the (excluded) singular ring, and so represents 
the specified exterior space-time. 

It is convenient to write $’ = 2$, so that (3) takes the form 

ds2 = dt2-dR:-A2R: dtj2-(R1  COS^$+^)^ d42  ( 5 )  

with A = 2 and 0 6 $ 6 2n. Note that for A = 1 we can adjoin the points R, = 0 
without introducing a singularity there. Hence one method (many generalizations 
being evident) for constructing a nonsingular source to occupy a toroidal region 
0 < R, < b (b < a) is to assume that (5) applies everywhere, with A = A(R,) > 0, and 

A = 2  R , 2 b  

A = l  R, = 0. 

Provided that A(R1)€ C 3  and has vanishing first derivative at R, = 0 (because of the 
polar nature of the coordinate R,) the continuity conditions of Lichnerowicz will be 
satisfied throughout the space-time. 

The field equations for ( 5 )  give 

T ; - T ;  = 0 ( i  = 1,2, 3) 

T :  = ( 8 ~ R p ~ ) - ~ ( 4 R ,  -PP’)  cos 21) 

T i  = 0 

T :  = -(8nP)-’P” 

T t  = P2T: = (4nRP)-’(RlP’-P)sin2$ (10) 

where P = R,A(R,), P’ = dP/dR,, R = R, cos 2$+a. and the labelling of coordinates is 
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xo = t ,  x1 = R I ,  x2 = @, x3 = 4. All other components of the stress-energy tensor T: 
vanish. Equation (6) is an obvious consequence of the flatness of the exterior manifold, 
while (8) is probably due to the very restricted form assumed for the interior metric. 
The sign changes in T i ,  Tt, T i ,  as 1(1 varies, with R ,  fixed, are almost certainly 
attributable to the branching property, and therefore similar behaviour may be expected 
in minimal sources for a much wider class of space-times with this topology. 

The boundary conditions on p are 

R ,  = 0:  p = 0  p' = 1 

R I  = b :  p = 2b p' = 2 p" = p"' = 0. 

It follows that p" must change sign at least once in (0, b). Thus, if we picture the source 
as a set of concentric toroidal shells R ,  = constant, a consequence of (9) is that some of 
these shells will be in a state of high longitudinal compression and some in a state of 
high tension. This, too, is quite possibly typical for space-times with Kerr type branching, 
and should be verifiable without too much difficulty. The worst though not unexpected 
feature in the present case is, of course, the incompatibility of (6)-(9) with the physical 
requirement > 0. 

The admissibility of minimal sources for Kerr space-times raises an important 
question. Under what conditions in the more familiar disc-like interiors will instability 
lead to separation of the matter, so that this complex situation can arise? 
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